
58 The Delphi Magazine Issue 66

Using XML And XSLT In Delphi
by Craig Murphy

As most website builders will
know, creating a website that

looks good in the plethora of
browsers now available is not an
easy task. Frequently we find our-
selves maintaining two (or more)
versions of our sites: one for
Internet Explorer, the other for
Netscape. With the advent of
micro-browsers in PDAs and the
sheer profusion of mobile tele-
phones, it seems that managing a
website is doomed to become even
more complex. Thankfully, com-
bining XML and XSLT offers light at
the end of the tunnel. XML allows
us to streamline our website con-
tent, while XSLT makes the
presentation of the content more
manageable.

Equally, we’re all used to deploy-
ing our traditional applications
with a collection of reports. Some
of these reports will be standard,
some defined by the customer, but
they all require some sort of
reporting engine. When changes to
those reports are required, often a
new executable is built and
deployed. XML and XSLT can help
us alleviate this requirement. After
all it is much easier to deploy XSLT
files: there’s no recompile required
and they are nothing more than
plain text files.

The idea of creating HTML-
based reports is not new; however,
there are still change and configu-
ration management issues associ-
ated with HTML-based reports.
Often the HTML tags are embed-
ded in an executable somewhere,
and there is some presentation

logic embedded in the
code. XML and XSLT
allow us to take HTML
reporting a step fur-
ther: true separation
of data (content) and
presentation (style).

So, if you thought
that XML and XSLT
was purely an internet
thing, read on: I will demonstrate
how we can put these languages to
good use in our Delphi applica-
tions. In this article I will explain
how we can use XML and XSLT as a
means of producing traditional
reports and how they can simplify
website creation.

Introduction
The eXtensible Markup Language
(XML) has taken the world by
storm: it is becoming prevalent in
most aspects of computing today.
The eXtensible Stylesheet Lan-
guage for Transformation (XSLT)
provides us with a means of
presenting an XML document to
the user. XSLT is more than a
presentation engine: it allows us to
sort and filter XML too.

However, XML is about how data
is represented: there is no mention
of how it should be presented or
displayed to the user. Whilst it is
possible to programmatically work
with XML and then present it to the
user, this is an approach that is not
easily extensible and can often be
platform specific. XSLT addresses
this problem by keeping the
presentation (the styling) separate
from the XML (the data).

XML and XSLT are W3C (World
Wide Web Consortium) recom-
mendations. The full W3C recom-
mendations for XML and XSLT are
freely available: there are URLs in
the Resources section at the end of
this article. The W3C is an organi-
sation responsible for orchestrat-
ing internet standards. Don’t let
the ‘internet’ bit put you off!

What Is XML?
I am sure we are all familiar with
some XML syntax; however, for the
sake of completeness, I’ll cover the
basics. Listing 1 presents a simple
XML document that provides
enough XML syntax to get us
started.

The first line of an XML docu-
ment is a processing instruction,
identified by the <? and ?>. All XML
documents have a root node, or
root element, often referred to as
the document element. In this
example it’s <employees>. Inside
the root node can be any number
of child nodes or elements. In this
case, there’s just one: <employee>.
The <employee> element (or node)
has an attribute no, and some child
nodes: <name>, <office> and <car>.
The element <car> has two attrib-
utes: <reg> and <model>. All ele-
ments have a start tag (<employee>)
and an end tag (</employee>). How-
ever, some elements, like <car>,
can be considered empty ele-
ments, hence the closing / after
the last attribute.

The application/object that
‘loads’ or manages an XML

<?xml version="1.0"?>
<!-- this is a comment -->
<employees>
<employee no="1">
<name>Frank Butcher</name>
<office>Walford</office>
<car reg="R872 BFS" model="Vectra" />

</employee>
</employees>

➤ Figure 1:
The XSLT Processing Model.

<?xml version="1.0"?>
<message>The Delphi Magazine</message>

➤ Above: Listing 1 ➤ Below: Listing 2

February 2001 The Delphi Magazine 59

document is known as an XML
Parser.

What Is XSLT?
XSLT is a language that allows us to
alter (or transform) an existing
source XML document into
another destination document.
The destination document need
not be XML; it is perfectly possible
to transform an XML document
into an HTML document that can
be rendered by a web browser. The
application/object that performs
the XSLT transformation is known
as an XSLT Processor.

If this process is to work, we
need to provide an XSLT Processor
with a source XML document and
an XSL stylesheet. The XSLT Pro-
cessor then analyses the XML doc-
ument using the ‘rules’ specified
by the XSL stylesheet. These rules
typically contain instructions that
describe which parts of the XML
document are copied to the output
document. The XSLT Processor is
capable of a lot more than just
copying XML from one document
to another, as we’ll see later in this
article. Figure 1 depicts this pro-
cess in simplified form.

XSLT Processors
There are a number of good XSLT
Processors available and I will
demonstrate two of them. The first
processor is called XT: it can be
downloaded from the URL speci-
fied in the Resources section. XT is
a command-line parser. James
Clark, who happens to be the
editor for the XSLT 1.0 W3C
recommendation, wrote XT.
Another good command-line
parser is Saxon: again it is a free

processor. Michael Kay, whose
book about XSLT is well worth a
read, wrote Saxon. Internet
Explorer 5 has both an XML Parser
and XSLT Processor available;
however, the XSLT Processor does
not follow the XSLT recommenda-
tion (there is more about using IE5
later in this article).

XSLT: A Simple Example
XSLT is itself XML and as such can
be loaded by an XML parser. Thus,
you may find that some XSLT
Processors require the string
<?xml version="1.0"?> as their first
line. The processors I have used
here do not enforce this, so I have
chosen not to include it. Listing 2
presents a simple XML document.
Listing 3 is our first look at an
XSL stylesheet. XSLT is a declara-
tive, rules-based programming

language in which the order of
the rules or the ‘code’ does not
actually matter.

Analysing Listing 3 line-by-line,
Line 1 identifies that the document
is a stylesheet: xmlns:xsl is an
attribute whose value points to a
URL where there is information
defining XML elements that start
with xsl:. In this case the
namespace URL is resolvable, but
you do not need an internet con-
nection: the XSLT Processor will
not try and connect to the URL!
There’s more about namespaces
in the next section. Line 3 specifies
a ‘rule’: <xsl:template>. The attrib-
ute match indicates that the rule is
to match the ‘root node’ of the
source XML document, in this case
it will match <message>. Line 4 is
known as an XSL instruction ele-
ment, this instructs the XSLT pro-
cessor to treat the matched node
(known as the current node) as
text, and to copy the node into the
output document.

If Listing 2, an XML document,
was transformed using Listing 3,
an XSL stylesheet, the resulting
output document would contain
the string The Delphi Magazine.

Namespaces Explained
We’ve seen that each XSLT ele-
ment requires a namespace quali-
fier: xsl. The namespace xsl gives
the XSLT processor the ability to

1: <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

2:
3: <xsl:template match="/">
4: <xsl:value-of select ="." />
5: </xsl:template>
6:
7: </xsl:stylesheet>

<itec:invoice
xmlns:invoice="http://itec.co.uk/invoice">

<amount>100</amount>
</itec:invoice>
<tdmweb:invoice

xmlns:invoice="http://tdmweb.co.uk/invoice">
<amount>100</amount>

</tdmweb:invoice>

➤ Above: Listing 3 ➤ Below: Listing 4

<?xml version="1.0"?>
<employees>
<employee emp_no="2">
<emp_lastname>Nelson</emp_lastname><emp_firstname>Roberto</emp_firstname>
<emp_phoneext>250</emp_phoneext><emp_salary currency="UKP">40000</emp_salary>

</employee>
<employee emp_no="4">
<emp_lastname>Young</emp_lastname><emp_firstname>Bruce</emp_firstname>
<emp_phoneext>233</emp_phoneext><emp_salary currency="USD">55500</emp_salary>

</employee>
</employees>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output omit-xml-declaration="yes" />
<xsl:template match="employees">
<HTML>
<BODY>
<H1>EMPLOYEE LISTING</H1>

<TABLE>
<TR><TD>Employee number</TD><TD>Last Name</TD><TD>First Name</TD></TR>
<xsl:for-each select="employee">
<TR><TD><xsl:value-of select="@emp_no" /></TD>
<TD><xsl:value-of select="emp_lastname" /></TD>
<TD><xsl:value-of select="emp_firstname" /></TD>
</TR>
</xsl:for-each>
</TABLE>

</BODY>
</HTML>
</xsl:template>

</xsl:stylesheet>

➤ Above: Listing 5 ➤ Below: Listing 6

60 The Delphi Magazine Issue 66

recognise which elements provide
XSL instructions, such as
<xsl:value-of ...> Listing 4 pro-
vides an example XML document
that uses two namespaces.

By prefixing elements with a
namespace qualifier, for example
itec or tdmweb, we can prevent
element name conflicts. They also
allow us to assume some semantic
meaning, for example does the
tdmweb amount include VAT or not?
On the surface, we don’t know and
we cannot tell. However, because
we have a namespace, we can
‘work within the notional context
of http://tdmweb.co.uk/invoice’,
and can thereby adhere to the
rules for a tdmweb invoice. The
same can be said for the itec
namespace.

Namespaces use URLs because
we can guarantee that they are
unique. The URLs used don’t have
to be resolvable either; that is,
there can be nothing at the other
end. It is only ‘meaning’ that is
derived from the namespace URL.
However, in the future, we might
see something ‘more solid’ appear
at the end of namespace URLs.

So, in a nutshell, namespaces
allow us to process two invoices
and two amounts, each interpreted
slightly differently.

XSLT: A Worked Example
Listing 5 presents some of the
Employee table from DBDEMOS as an
XML document. For the purposes
of this article, I have added an extra
field currency to each employee
record. I will be using the currency
field to demonstrate the filtering

and selection capa-
bilities of XSLT. The
Delphi code to
create the XML
document is part of
the example that is
included on the
companion disk
and is shown in
Listing 7.

Listing 6 presents a stylesheet
that is capable of transforming
Listing 5 into HTML for display.
Notice how the standard HTML
elements, <HTML>, <BODY>, etc. are
not prefixed with xsl:. The XSLT
processor will simply copy these
elements into the output docu-
ment. Note, however, that empty
HTML elements, like <HR> and
,
need to be re-written as <HR /> and

, ie as XML empty elements.

We have already seen how
<xsl:template> works. In Listing 6
it selects the root node <employ-
ees>. With <employees> as the
‘context’ or current node, the XSLT
Processor processes everything
inside <xsl:template> until it
meets a matching end element,
</xsl:template>. Figure 2
represents this match.

The XSLT Processor then copies
all elements without the xsl:
prefix over to the output docu-
ment. The first xsl instruction that
the processor has to deal with is:
<xsl:for-each select="employee">.

procedure TForm1.btnCreateXMLClick(Sender: TObject);
var
f : TextFile;
i : Integer;

begin
i := 0;
AssignFile(f, g_AppPath + '\XT\employees.xml');
Rewrite(f);
writeln(f, '<?xml version="1.0"?>');
writeln(f, '<employees>');
writeln(f, '');
with tblEmployee do begin
Open;
First;
DisableControls;
while not eof do begin
write(f, '<employee emp_no="');
write(f, FieldByName('EMPNO').AsString);
writeln(f, '">');
write(f, '<emp_lastname>');
write(f, FieldByName('LASTNAME').AsString);
write(f, '</emp_lastname>');
write(f, '<emp_firstname>');
write(f, FieldByName('FIRSTNAME').AsString);
write(f, '</emp_firstname>');

write(f, '<emp_phoneext>');
write(f, FieldByName('PHONEEXT').AsString);
write(f, '</emp_phoneext>');
// For every other employee, alternate the currency...
// ..for the sake of demonstration...
if i mod 2 = 0 then
write(f, '<emp_salary currency="UKP">')

else
write(f, '<emp_salary currency="USD">');

write(f, FieldByName('Salary').AsString);
writeln(f, '</emp_salary>');
writeln(f, '</employee>');
writeln(f, '');
next;
i:=i+1;

end;
EnableControls;
Close;

end;
writeln(f, '</employees>');
CloseFile(f);
mXML.Lines.LoadFromFile(g_AppPath + 'XT\employees.xml');
wbXML.Navigate(g_AppPath + 'XT\employees.xml');

end;

➤ Listing 7
<HTML>
<BODY>
<H1>EMPLOYEE LISTING</H1>

<TABLE>
<TR>
<TD>Employee number</TD>
<TD>Last Name</TD>
<TD>First Name</TD>

</TR>
<TR><TD>2</TD>
<TD>Nelson</TD>
<TD>Roberto</TD>
</TR>
<TR><TD>4</TD>
<TD>Young</TD>
<TD>Bruce</TD>
</TR>
</TABLE>
</BODY>
</HTML>

➤ Listing 8

➤ Figure 2:
Processing an
XSL instruction:
stage 1, identify
the context
node; stage 2,
copy non-xsl
elements to the
output stream.

February 2001 The Delphi Magazine 61

We know that the <employees>
element contains a number of
<employee> elements, therefore this
xsl instruction can be read as ‘for
each employee do...’. Inside the
<xsl:for-each> element, the con-
text node becomes the first
employee element, then the
second, and so on. <xsl:value-of
select="@emp_no" /> instructs the
processor to copy the attribute
emp_no from the input document
into the output document. Figure 3
represents this process: remem-
ber that the XSLT Processor is
processing an <xsl:for-each> con-
struct, so it will iterate over all the
<employee> elements inside
<employees>. Figure 4 represents
the output when viewed in a
browser. Listing 8 represents a
sample from the output document.

Filtering XML
Elements Using XSLT
Listing 9 demonstrates two ways in
which XSLT allows us to filter XML
elements. Effectively, Listing 9 is

performing a query
that reads: ‘List all employees
whose salary is greater than 50000
and whose currency is USD’.

The select attribute in an
<xsl:for-each> element takes an
‘expression’. At this point the XSLT
recommendation draws on

➤ Figure 3:
Processing an
<xsl:for-each>
element: stage 1,
identify the
context node;
stage 2, copy
non-xsl elements to
the output stream;
stage 3, identify
the attribute
emp_no in the
context node;
stage 4, copy the
value of the
attribute emp_no
to the output
stream.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output omit-xml-declaration="yes" />
<xsl:template match="employees">
<HTML>
<BODY>
<H1>EMPLOYEE LISTING</H1>

<TABLE>
<TR><TD>Employee number</TD><TD>Last Name</TD>
<TD>First Name</TD><TD>Salary</TD></TR>

<xsl:for-each select="employee[emp_salary > 50000]">
<xsl:if test="emp_salary[@currency = 'USD']">
<TR><TD><xsl:value-of select="@emp_no" /></TD>
<TD><xsl:value-of select="emp_lastname" /></TD>
<TD><xsl:value-of select="emp_firstname" /></TD>
<TD><xsl:value-of select="emp_salary" /></TD>
</TR>
</xsl:if>
</xsl:for-each>
</TABLE>

</BODY>
</HTML>
</xsl:template>

</xsl:stylesheet>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output omit-xml-declaration="yes" />
<xsl:template match="employees">
<HTML>
<BODY>
<H1>EMPLOYEE LISTING</H1>

<TABLE>
<TR><TD>Employee number</TD><TD>Last Name</TD>
<TD>First Name</TD><TD>Currency</TD></TR>

<xsl:for-each select="employee">
<xsl:sort select="emp_lastname" order="ascending" />
<xsl:if test="emp_salary[@currency = 'UKP']">
<TR><TD><xsl:value-of select="@emp_no" /></TD>
<TD><xsl:value-of select="emp_lastname" /></TD>
<TD><xsl:value-of select="emp_firstname" /></TD>
<TD><xsl:value-of select="emp_salary/@currency" /></TD>
</TR>
</xsl:if>
</xsl:for-each>
</TABLE>

</BODY>
</HTML>
</xsl:template>

</xsl:stylesheet>

➤ Above : Listing 9 ➤ Below: Listing 10

another recommendation: XPath.
XPath provides us with a means of
‘addressing the elements with an
XML document’. For example, the
following expression would select
all the employee elements where
the employee emp_salary element
has a value greater than 50000:
employee[emp_salary > 50000].

If we combine this expression in
an <xsl:for-each> element, we
have something that is fairly
useful: <xsl:for-each select=
"employee[emp_salary > 50000]">

A second method of filtering out
unwanted XML elements is the use
of an <xsl:if> element. The test
attribute in an <xsl:if> element
takes a Boolean XPath expression.
For example, the following expres-
sion would be true if the currency
attribute of the emp_salary element
(from within the current

➤ Figure 4: An XSLT
transformation as viewed in a
browser.

62 The Delphi Magazine Issue 66

node) held the value USD:
emp_salary[@currency = ‘USD’]. If
we combine this expression in an
<xsl:if> element, we have another
useful filtering mechanism:

<xsl:if test=
"emp_salary[@currency = ‘USD’]">

Sorting XML Using XSLT
Listing 10 demonstrates how we
can use XSLT to re-order XML ele-
ments. An <xsl:sort> element is
powerful enough to perform a sort
based on a number of criteria:
order (ascending or descending),
case-order (upper-first or lower-
first) and data-type (text, number
or user-defined). For example, the
following <xsl:sort> element sorts
the returned elements using the
value of the emp_lastname element,
in ascending order:

<xsl:sort select="emp_lastname"
order="ascending" />

XSLT From Microsoft
Microsoft pre-empted the W3C
with the release of Internet
Explorer 5 during 1998. Part of
the IE 5 installation, MSXML.DLL,
provided programmatic access to
an XML parser and an XSL proces-
sor. However, during 1999 the
W3C XSLT specification changed
dramatically; by 16 November
1999 the specification had become
an official W3C recommendation.
The differences between the W3C
recommendation and the
Microsoft implementation were

Importing The
MSXML Type Library
From the Project menu, choose
Import Type Library, navigate
through the list of type libraries until
you find Microsoft XML, v3.0. Figure
5 should look familiar. Clicking on
the Create Unit button will create a
Delphi implementation of the type
library, you should find it in your
C:\Program Files\Borland\Delphi5\
Imports directory. Add the newly
created unit, MSXML2_TLB.pas, to
your project. You are now ready to
start using the Microsoft Parser.

➤ Figure 6: The Internet Explorer
5.x XML/XSLT model.

➤ Figure 5

significant, so significant that the
Microsoft implementation is
frequently referred to as XSL98.

However, Microsoft recognised
that things had to change, so they
embarked on the development of a
conforming XSLT Processor,
known as MSXML3. To ensure that
they kept the developer commu-
nity active, MSXML3 was released
as a series of ‘web releases’, or beta
versions. The beta programme cul-
minated with the release of the
final version appearing on the last
day of October 2000.

When you install IE 5 (and 5.5),
an earlier version of MSXML is
installed. XSL98 is available, but
XSLT 1.0 is not. You can download
MSXML 3 and install it, but you
must also have IE 5.x installed.

MSXML3 (and the original ver-
sion, MSXML.DLL) offers an XML
Parser and an XSLT Processor as
COM components. As Delphi devel-
opers we can take advantage of
these free components. The down-
side of using IE 5 is that it must be
installed on the machine that your
application is deployed on. Simi-
larly, MSXML3.DLL must be regis-
tered too. Figure 6 depicts this
situation. However, if you are able
to guarantee these requirements,
you may take advantage of these
components in your Delphi
applications.

Using MSXML In Delphi
So far, all the XML/XSLT examples
have been processed using the
XSLT Processor XT. Whilst this is a

free XSLT Processor, it does add
nearly 800Kb to the size of the
application being deployed. How-
ever, if you are able to guarantee
that Internet Explorer 5 is installed
on the machine on which you plan
to deploy your application, you
may use the Microsoft XML Parser
and XSLT Processor.

Internet Explorer makes display-
ing XML that has been automati-
cally transformed that little bit
easier. By adding another process-
ing instruction to the XML file, we
can instruct Internet Explorer to
display XML using a specified
stylesheet. Listing 11 includes pro-
cessing instructions required to
transform the XML using the
emp_style.xsl stylesheet.

However, it is likely that you may
wish to control precisely which
XSL stylesheet is used: this is
where Delphi fits in. I will assume
that you have installed Internet
Explorer 5.x, MSXML 3.0 (available
from the URL in the Resources sec-
tion) and have imported the MSXML
type library into your Delphi pro-
ject (see the sidebar for details of
how to do this). Listing 12 presents
the code required to perform an
XSLT transform using the
Microsoft offering; Figure 8 pres-
ents the results of the transform in
a TWebBrowser component

In true Microsoft fashion, their
implementation of the XML parser
and XSLT processor offers a few
‘non-standard’ extensions. One of
those extensions is a very practi-
cal selectNodes method. This
method takes an XPath expression
and returns a list of matching
nodes. Listing 13 demonstrates
selectNodes in practice; Figure 8
presents the results of a call to
selectNodes.

February 2001 The Delphi Magazine 63

XSL98 And XSLT
Without MSXML3.DLL installed, IE
5 will not process a stylesheet
where the root element is:

<xsl:stylesheet xmlns:xsl=
"http://www.w3.org/1999/XSL/
Transform" version="1.0">

Instead, we have to specify a root
element with a different xsl
namespace:

<xsl:stylesheet xmlns:xsl=
"http://www.w3.org/TR/WD-xsl">

If XSL98 is so different from XSLT,

➤ Figure 7: DBDemos Employee table as XML.

why is it still so useful? If you are
responsible for the creation of
websites, then XSL98 might be of
use to you. If your web hosting
company uses Windows NT or
Windows 2000 with Internet
Explorer 5 installed, then you can
take advantage of XSL98. The

➤ Figure 8: Transform with the MS XSLT Processor.

64 The Delphi Magazine Issue 66

<?xml version="1.0"?>
<?xml:stylesheet type="text/xsl" href="emp_style.xsl"?>
<employees>
<employee emp_no="2">
<emp_lastname>Nelson</emp_lastname><emp_firstname>Roberto</emp_firstname>
<emp_phoneext>250</emp_phoneext><emp_salary currency="UKP">40000</emp_salary>

</employee>
</employees>

procedure TForm1.TransformClick(Sender: TObject);
var
xmlEmployees, xslStyle : IXMLDOMDocument;

begin
xmlEmployees := CoDOMDocument.Create;
xslStyle := CoDOMDocument.Create;
xmlEmployees.load('employees.xml');
xslStyle.load('empuksna.xsl');
memoTransform.Text := xmlEmployees.transformNode(xslStyle);
memoTransform.Lines.SaveToFile('msxml.htm');
wbMSXML.Navigate(g_AppPath+'msxml.htm');

end;

actual syntax differences between
XSL98 and XSLT are minimal, so
the time you invest in learning
XSL98 will make the transition to
XSLT that much easier.

If you are using TDMWeb to host
your websites you can take advan-
tage of XML and XSL98 for free
on your sites. The VBScript file
simple_transform.asp on the com-
panion disk shows how to use the
Microsoft Parser and Processor
(for more on TDMWeb web hosting
see www.TDMWeb.com).

If you wish to learn more about
XSL98, there is a book available:
XML IE5 by Alex Homer published
by Wrox Press (the ISBN is
1-861001-57-6).

Resources
Two command-line XSLT processors that are discussed in this article are avail-
able. For XT see www.jclark.com/xml/xt.html, for Instant Saxon see
http://users.iclway.co.uk/mhkay/saxon/instant.html. Both need the Microsoft
Java VM (which is installed with Internet Explorer 4.01+).

The Microsoft XML Parser (and XSLT Processor) version 3.0 is available at
http://msdn.microsoft.com/xml/general/xmlparser.asp. The Microsoft offer-
ing comes with a comprehensive HTML Help file that provides good coverage
of XML and is a good XSLT reference too.

The complete W3C XML 1.0 recommendation is available at www.w3.org/
TR/1998/REC-xml-19980210.

The complete W3C XSLT 1.0 recommendation is available at www.w3.org/
TR/1999/REC-xslt-19991116.

If you need a native Delphi XML parser, OpenXML is a good starting point:
www.philo.de/xml.

On the companion disk there is a Delphi example that demonstrates XSLT for
presentation of XML, the example includes filtering and sorting examples.
There is a separate example that demonstrates the use of the Microsoft XML
Parser and XSLT Processor.

procedure TForm1.btnApplyClick(Sender: TObject);
var
xmlResult : IXMLDOMNodeList;
i : Integer;

begin
XMLResult:=g_xmlDoc.selectNodes (edtPattern.Text);
mResults.Text:='';
lblCount.Caption:= IntToStr(XMLResult.Length) + ' item(s) returned';
for i:=0 to XMLResult.Length-1 do
begin
mResults.Lines.Add(XMLResult.Item[i].XML);

end;
end;

➤ Above: Listing 12 ➤ Below: Listing 13

➤ Listing 11
Now And The Future
We often see XML mentioned in the
same breath as Application-2-
Application (A2A) and Business-2-
Business (B2B). Apart from the
obvious ease of transport that XML
gives us, it’s easily transformable.
XSLT allows us to convert ‘your
invoice’ into ‘my invoice’, and this
is exactly what products like
BizTalk can do for us. At the heart
of BizTalk is a tool known as the

BizTalk Mapper: it provides a
graphical user interface that
allows the creation of XSLT that
transforms your invoice into my
invoice. During the transfor-
mation, scripts can access data-
bases to provide for a more accu-
rate transformation.

Underlying BizTalk is SOAP
(Simple Object Access Protocol),
which provides us with a protocol
for the structured exchange of
data, using XML as the data
representation.

Summary
Over the course of this rather busy
article, we have seen how it is
possible to create HTML reports
using Delphi, XML and XSLT. Hope-
fully the small amount of XSLT that
I have shown here has whetted
your appetite for more: it is a
phenomenally powerful language
that not only transforms the struc-
ture of XML documents, but allows
a real degree of control with the
provision of filtering, sorting, and
computational elements. If this
brief look at XSLT makes you want
to dip into your wallet, I can
strongly recommend the XSLT
Programmer’s Reference by
Michael Kay, published by Wrox
Press (ISBN 1-861003-12-9).

Craig Murphy works as an
Enterprise Developer for Currie &
Brown (www.currieb.com) whose
primary business is quantity
surveying, cost management and
project management. He can be
contacted via email at Craig@
isleofjura.demon.co.uk

	Introduction
	What Is XML?
	What Is XSLT?
	XSLT Processors
	XSLT: A Simple Example
	Namespaces Explained
	XSLT: A Worked Example
	Filtering XML Elements Using XSLT
	Importing The MSXML Type Library
	Sorting XML Using XSLT
	XSLT From Microsoft
	Using MSXML In Delphi
	XSL98 And XSLT
	Now And The Future
	Summary
	Resources

